Holographic
reduction：
a domain changed application and its partial converse theorems

# Holographic reduction： a domain changed application and its partial converse theorems 

## ICALP 2010

夏盟佶<br>Mingji Xia

Institute of Software
Chinese Academy of Sciences

2010．7．6

## ģヒ̄̃s Outline

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

Outline
Defintitions \&
holographic
reduction
A domain changed application

Converse of holographic reduction
(1) Definitions \& holographic reduction
(2) A domain changed application
(3) Converse of holographic reduction

## प89-45

## Matrix multiplication

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

Definitions \& holographic reduction

- Product of vectors and matrices.

$$
\begin{aligned}
& A C=\sum_{e \in[n]} a_{e} c_{e} \\
& A=\left(a_{e}\right), C=\left(c_{e}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& A B C=\sum_{e, e^{\prime} \in[n]} a_{e} b_{e e^{\prime}} c_{e^{\prime}} \\
& A=\left(a_{e}\right), B=\left(b_{e e^{\prime}}\right), C=\left(c_{e^{\prime}}\right) .
\end{aligned}
$$



- Vector $A$ (resp. $C$ ) is also a unary function

$$
e \in[n] \rightarrow a_{e}
$$

- Matrix $B$ is also binary function

$$
\left(e, e^{\prime}\right) \in[n]^{2} \rightarrow b_{e e^{\prime}}
$$

##  $\# \mathbf{F} \mid \mathbf{H}$

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

Outline
Definitions \& holographic reduction

- The input of $\# \mathbf{F} \mid \mathbf{H}$ is a bipartite graph $G(U, V, E)$. Each vertex $v \in U \cup V$ has a function $F_{v}$.

- The value of this problem is

$$
\sum_{e_{1}, \ldots, e_{t} \in[n]} \prod_{v \in U \cup V} F_{v}\left(e_{v, 1}, \ldots, e_{v, d_{v}}\right),
$$

where $e_{v, i}$ is the $i$ th edge of $v$.

- If $v \in U, F_{v} \in \mathbf{F}$.

If $v \in V, F_{v} \in \mathbf{H}$.

## $\square=\sqrt{4}$

Gadgets in $\# \mathbf{F} \mid \mathbf{H}$

Holographic reduction: a domain changed application and its partial converse theorems

Mingji Xia

Outline
Definitions \& holographic reduction

- Except defining the value (a function of arity 0 ) of an instance, we can also define the function of a gadget.


## Example

$(A B)\left(x_{1}, x_{2}\right)=\sum_{e} a_{x_{1}, e} b_{e, x_{2}}$
$A=\left(a_{x_{1}, e}\right), B=\left(b_{e, x_{2}}\right)$.


- Given a gadget $\Gamma$, we can define its function $F_{\Gamma}$ in its external edges $\left\{x_{i}\right\}$, by a summation over its internal edges $\left\{e_{i}\right\}$, where $e_{v, i}$ is the $i$ th edge of $v$.

$$
F_{\Gamma}\left(x_{1}, \ldots, x_{s}\right)=\sum_{e_{1}, \ldots, e_{t} \in[n]} \prod_{v \in U \cup V} F_{v}\left(e_{v, 1}, \ldots, e_{v, d_{v}}\right) .
$$



##  <br> More examples

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

## Outline

Definitions \& holographic reduction

A domain changed application

Conversc of holographic reduction


We also use a vector of length $[n]^{k}$ to denote a function of arity $k$.

$$
F(M \otimes M \otimes M)
$$

Also denoted as $F\left(M^{\otimes 3}\right)$.


## !GЄ̄ÁS

Holographic reduction

Holographic
reduction: a domain changed application and its partial converse theorems

Mingji Xia

Outline
Definitions \& holographic reduction



Theorem (Valiant 2004)
$\#\{f\} \mid\{h\}$ and $\#\{F\} \mid\{H\}$ have the same value.

$$
F=f M^{\otimes 3},
$$

$$
H=\left(M^{-1}\right)^{\otimes 2} h
$$

## $B \rightarrow=$

## An example: Fibonacci function

## Holographic

reduction:
a domain
changed application and its partial
converse
theorems
Mingji Xia

Outline
Definitions \& holographic reduction

- A symmetric function $F$ of arity $k$ in Boolean variables is denoted as $\left[f_{0}, f_{1}, \ldots, f_{k}\right]$, where $f_{i}$ is the value of $F$ on inputs of weights $i$.
- $F_{1}=\left[a_{0}, a_{1}\right]=[0,1]$,
$F_{2}=\left[a_{0}, a_{1}, a_{2}\right]=[0,1,1]$,
$F_{3}=\left[a_{0}, a_{1}, a_{2}, a_{3}\right]=[0,1,1,2], \ldots$
$F_{k}=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$.
( $\left\{a_{i}\right\}$ is Fibonacci sequence.)
- $={ }_{k}$ denotes the equivalent relation of arity $k$. $\left(=_{k}\right)=[1,0, \ldots, 0,1] .\left(=_{k}^{a, b}\right)=[a, 0, \ldots, 0, b]$.
- For any $d$, there is holographic reduction between $\#\left\{==_{1}^{1,-1}, \ldots,={ }_{d}^{1,-1}\right\} \mid\left\{={ }_{2}^{\varphi, \varphi-1}\right\}$ and $\#\left\{F_{1}, \ldots, F_{d}\right\} \mid\left\{==_{2}\right\}$. The base $M$ is $\left(\begin{array}{cc}1 & \varphi \\ 1 & 1-\varphi\end{array}\right)$, where $\varphi=\frac{\sqrt{5}-1}{2}$.


## ex

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

## Outline

Definitions \& holographic reduction

- For any $d$, there is holographic reduction between $\#\left\{={ }_{1}^{1,-1}, \ldots,={ }_{d}^{1,-1}\right\} \mid\left\{={ }_{2}^{\varphi, \varphi-1}\right\}$ and $\#\left\{F_{1}, \ldots, F_{d}\right\} \mid\left\{==_{2}\right\}$. The base $M$ is $\left(\begin{array}{cc}1 & \varphi \\ 1 & 1-\varphi\end{array}\right)$, where $\varphi=\frac{\sqrt{5}-1}{2}$.
- Because $\sqrt{5} a_{k}=\varphi^{k}-(1-\varphi)^{k}$, $\sqrt{5} F_{k}=(1, \varphi)^{\otimes k}-(1,1-\varphi)^{\otimes k}$.
- Because $\left(=_{k}^{1,-1}\right)=(1,0)^{\otimes k}-(0,1)^{\otimes k}$,

$$
\left(==_{k}^{1,-1}\right) M^{\otimes k}=\sqrt{5} F_{k} .
$$

$$
\left(M^{-1}\right)^{\otimes 2}\left(==_{2}^{\varphi, \varphi-1}\right)=\left(==_{2}\right)
$$

## $\square=\sqrt{4}$

## A domain size changed application

Holographic reduction: a domain changed application and its partial converse theorems

Mingji Xia
$F_{k}=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$, for any $d, \#\left\{F_{1}, F_{2}, \ldots, F_{d}\right\} \mid\left\{==_{2}\right\}$ is polynomial time computable.
A problem is \#P-hard, if all problems in \#P can be reduced to it.

$$
\begin{aligned}
& \text { Lemma } \\
& P_{k+1}=\left[a_{0}, a_{1}, \ldots, a_{k},-2 a_{k}\right], \text { for any } d \geq 2 \text {, } \\
& \#\left\{F_{1}, F_{2}, \ldots, F_{d}, P_{d+1}\right\} \mid\left\{=_{2}\right\} \text { is \#P-hard. }
\end{aligned}
$$

## Theorem

For any $d \geq 2$, there exists a complex binary function $H_{d}$ such that $\#\left\{={ }_{1},={ }_{2}, \ldots,={ }_{d+1}\right\} \mid\left\{H_{d}\right\}$ is \#P-hard, but $\#\left\{={ }_{1},={ }_{2}, \ldots,={ }_{d}\right\} \mid\left\{H_{d}\right\}$ is polynomial time computable.

- Only need to build a holographic reduction from $\#\left\{F_{1}, F_{2}, \ldots, F_{d}, P_{d+1}\right\} \mid\left\{==_{2}\right\}$ (domain is [2]) to $\#\left\{={ }_{1},={ }_{2}, \ldots,={ }_{d+1}\right\} \mid\left\{H_{d}\right\}$ (domain is $[m]$ ).
(This is also a holographic reduction from $\#\left\{F_{1}, F_{2}, \ldots, F_{d}\right\} \mid\left\{==_{2}\right\}$ to $\left.\#\left\{==_{1},={ }_{2}, \ldots,==_{d}\right\} \mid\left\{H_{d}\right\}.\right)$
$\sqrt{4}=\sqrt{1}$
Maximum degree and complexity

Holographic
reduction:
a domain
changed application and its
partial
converse
theorems
Mingji Xia

Outline
Defintitions \&
holographic reduction

A domain changed application

Many hardness results are strengthened to maximum degree bounded version.

- SAT $\rightarrow$ 3SAT (NP-hard)
- \#SAT $\rightarrow$ \#2SAT (\#P-hard)
- Lots in [Vadhan 2001] ......
- $\# \operatorname{CSP}(\mathbf{F})\left(\#\left\{=_{1},==_{2}, \ldots\right\} \mid \mathbf{F}\right) \rightarrow \#\left\{={ }_{1},={ }_{2},={ }_{3}\right\} \mid \mathbf{F}$ (each variables occurs at most 3 times), where $\mathbf{F}$ is composed of complex functions in Boolean variables. [Cai,Lu,Xia 2009]
By this result, our theorem does not hold for Boolean domain.
By our theorem, we can not get this kind of strong degree bounded \#P hardness results for general counting problem classes.
- If $\# \operatorname{CSP}(\{G\})$ is hard, there exists some $d$ (depends on $G)$ such that $\#\left\{=_{1}, \ldots,=_{d}\right\} \mid\{G\}$ is hard, where $G$ is a $0-1$ weighted undirected graph. [Dyer,Greenhill 2000]


## $\square=\sqrt{4}$

Holographic reduction (another version)
Matrix multiplication satisfies associative law.
$(A B) C=A(B C)$.


Theorem (Valiant 2004)
$\begin{array}{llr}\#\left\{F M^{\otimes 3}\right\} \mid\{H\} & & \text { and } \\ \#\{F\} \mid\left\{M^{\otimes 2} H\right\} & \text { have } & \text { the }\end{array}$ same value.

HEOAS
Holographic
reduction: reduction: a domain changed application and its partial converse theorems

From $\#\left\{F_{1}, F_{2}, \ldots, F_{d}\right\} \mid\left\{=_{2}\right\}$

$$
\text { to } \#\left\{==_{1},={ }_{2}, \ldots,={ }_{d}\right\} \mid\left\{H_{d}\right\}
$$



- Find $M$ such that $F_{k}=\left(=_{k}\right) M^{\otimes k}$. Recall, Theorem: there exists $H_{d}\left(=M^{\prime} M\right), \ldots$
- Two small tricks for constructing such a $M$.
(1) $\left[a_{0}, a_{1}, a_{2} \ldots, a_{k}\right]=\sum_{i=0}^{k} \frac{c_{i}}{c}\left[1, r_{i}, r_{i}^{2}, \ldots, r_{i}^{k}\right]$.

If $r_{i}$ are different integers, there is an integer solution for $c_{i}$ and $c$.
$\left|c_{i}\right|\left[1, r_{i}, r_{i}^{2}, \ldots, r_{i}^{k}\right]$ can be realized in $\left(=_{k}\right) M^{\otimes k}$ by setting $\left|c_{i}\right|$ rows of $\left(1, r_{i}\right)$ in $M$.
If $c_{i}$ is negative, we utilize $\sum_{s=1}^{k} r_{s}^{i}=-1$ for $i=$ $1,2, \ldots, k$, where $r_{s}=e^{\frac{2 \pi s}{k+1}}$.


## ISモĀS Remark

Holographic
reduction:
a domain
changed
application and its
partial
converse
theorems

- In this application, just some problems examples are constructed. There is no requirement on domain size $m$ and function $H_{d}$.
- Under these weak requirements, we realize a strong transformation on one side by holographic reduction.
- Open problem:

Assume $\mathrm{FP} \neq \# \mathrm{P}$. Is there some class of problems, such that predicating the complexity of these problems is uncomputable?
In some papers about dichotomy theorems, it is considered whether their dichotomy theorems are computable, and some of them are open.

Holographic
reduction:
a domain
changed application and its partial converse theorems

## Conjecture

Under some conditions, the converse of holographic reduction holds.

For example, $\#\{f\} \mid\{h\}$ and $\#\{F\} \mid\{H\}$ have the same value, where $f$ and $F$ are ternary functions, and $h$ and $H$ are binary functions. Then, there exists nonsingular matrix $M$ such that,

$$
\begin{gathered}
F=f M^{\otimes 3} \\
H=\left(M^{-1}\right)^{\otimes 2} h .
\end{gathered}
$$

It does not holds for some special cases. For example, $\#\{(1,0),(1,0)\} \mid\{(4,1)\}$ and $\#\{(1,1),(1,2)\} \mid\{(4,0)\}$.

Holographic
reduction:
a domain
changed
application and its
partial
converse theorems

## Theorem (Lovász 1967, Dyer,Goldberg,Paterson 2006)

Suppose $H_{1}$ and $H_{2}$ are directed acyclic graphs. If for all directed acyclic graphs $G$, the number of homomorphisms from $G$ to $H_{1}$ is equal to the number of homomorphisms from $G$ to $H_{2}$, then $H_{1}$ and $H_{2}$ are isomorphic.

- If there is a holographic reduction between $\# \mathbf{R}_{=} \mid\left\{H_{1}\right\}$ and $\# \mathbf{R}=\mid\left\{H_{2}\right\}$, it can be proved that the base $M$ is a permutation matrix.

$$
\mathbf{R}=\text { denotes }\left\{={ }_{1},==_{2}, \ldots={ }_{k}, \ldots\right\} .
$$

## $B=\sqrt{4}$

Holographic
reduction:
a domain
changed application and its
partial
converse
theorems
Mingji Xia

Outline
Definitions \&
holographic reduction

A domain

In the following, we only consider $\# \mathbf{F} \mid\left\{=_{2}\right\}$. Range is real number.

- Domain is arbitrary [d].
- $\mathbf{F}$ is composed of unary functions.
- $\mathbf{F}$ is composed of one symmetric binary function.
- $\mathbf{F}$ is composed of two symmetric binary functions $F_{1}$ and $F_{2}$. All eigenvalues of $F_{1}$ are equal.
- $\mathbf{F}$ is composed of two symmetric binary functions $F_{1}$ and $F_{2}$. All eigenvalues of $F_{1}$ are different, so is $F_{2}$.
- Domain is [2].
- $\mathbf{F}$ is composed of two symmetric binary functions.
- $\mathbf{F}$ is composed of one unary function and one symmetric binary function.
- $\mathbf{F}$ is composed of one symmetric ternary function.


## Escas <br> Proof sketch-Unary functions

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

Domain is arbitrary [d]. $\mathbf{F}$ is composed of unary functions. $\#\left\{F_{1}, \ldots, F_{k}\right\} \mid\left\{==_{2}\right\}$ and $\#\left\{H_{1}, \ldots, H_{k}\right\} \mid\left\{==_{2}\right\}$ have the same value. That is,

$$
F^{\prime} F=H^{\prime} H,
$$

where matrices $F=\left(F_{1}, F_{2}, \ldots, F_{k}\right)$ and $H=\left(H_{1}, H_{2}, \ldots, H_{k}\right)$. The base of holographic reduction is simply $H F^{-1}$. Because $F^{\prime} F=H^{\prime} H, M^{\prime} M=E . M$ change $={ }_{2}$ into $={ }_{2}$.
$\square=$
Proof sketch-Two symmetric binary functions

Holographic
reduction:
a domain changed application and its partial converse theorems

Domain is arbitrary $[d]$. $\mathbf{F}$ is composed of two symmetric binary functions $F_{1}$ and $F_{2}$. All eigenvalues of $F_{1}$ are different, so is $F_{2} . \#\left\{F_{1}, F_{2}\right\} \mid\left\{==_{2}\right\}$ and $\#\left\{H_{1}, H_{2}\right\} \mid\left\{==_{2}\right\}$.

- By the result for one symmetric function, we only need to prove for $\#\left\{F_{1}, M F_{2} M^{\prime}\right\} \mid\left\{={ }_{2}\right\}$ and $\#\left\{F_{1}, T F_{2} T^{\prime}\right\} \mid\left\{={ }_{2}\right.$ $\}$, where $F_{1}$ and $F_{2}$ are diagonal matrix with different diagonal entries, and $M, T$ are orthogonal matrices.
- Using polynomial interpolation method, we can realize $E_{i}$ by $F_{1}$ and $F_{2}$. $E_{i}(x, y)$ is always zero, except $E_{i}(i, i)=1$.


Because $\operatorname{tr}\left(E_{i} M E_{j} M^{\prime}\right)=\operatorname{tr}\left(E_{i} T E_{j} T^{\prime}\right), M_{i j}^{2}=T_{i j}^{2}$.
 reduction: a domain changed application and its partial converse theorems

- $\left(\frac{M_{i j}}{T_{i j}}\right)^{2}= \pm 1$, assume $T_{i j}$ is not zero.


Because $\operatorname{tr}\left(E_{i} M E_{j} M^{\prime} E_{k} M E_{l} M^{\prime}\right)=\operatorname{tr}\left(E_{i} T E_{j} T^{\prime} E_{k} T E_{l} T^{\prime}\right)$, $\frac{M_{i j}}{T_{i j}} \frac{M_{i l}}{T_{i l}} \frac{M_{k j}}{T_{k j}} \frac{M_{k l}}{T_{k l}}=1$.
Consider matrix $R=\left(\frac{M_{i j}}{T_{i j}}\right)$. This means, the $2 \times 2$ submatrix $R_{i k, j l}$ has rank 1 .

- We can prove $R$ has rank 1. (If there are zero $T_{i j}$, the proof is quite a few more complicated.)


## ̧モĀs Proof sketch-Two symmetric binary functions

Holographic
reduction:
a domain changed application and its partial converse theorems

Mingji Xia

Outline
Definitions \& holographic reduction

A domatn changed application

- $R=u v^{\prime}$, then $U T V=M$.
$u, v$ are column vector composed of 1 and -1 . $U$ (resp. $u$ ) is the diagonal matrix whose diagonal is $u$ (resp. $v$ ).
- Compose $U$ with $F_{1} . U F_{1} U^{\prime}=F_{1} . V F_{2} V^{\prime}=F_{2}$.

Holographic
reduction:
a domain changed application and its partial converse theorems

Domain is [2]. $\#\{F\} \mid\left\{==_{2}\right\}$ and $\#\{H\} \mid\left\{==_{2}\right\}$. We construct some gadgets to prove this case.


This does not work for $F=[x, y,-x,-y]$. The value of $\#\{F\} \mid\left\{==_{2}\right\}$ is always zero on non-bipartite graphs.
There is a direct proof for $[x, y,-x,-y]$ case.

## LSヒÃS Open problems

Holographic
reduction:
a domain
changed
application and its partial
converse
theorems
Mingji Xia

- Whether the converse of holographic reduction holds?
- If it does not hold, the condition is not a necessary condition.
Can we find some other sufficient conditions and reductions?
- If it does hold, can we utilize it to prove complexity results?

Holographic
reduction:
a domain
changed
application
and its partial
converse
theorems
Mingji Xia

## Outline

Definitions \& holographic reduction

A domain changed application

Converse of holographic reduction

# Thank you 

